INTEGRAL OF THE BOLTZMANN FACTOR A new approximation

V. K. Rao and M. F. Bardon

Royal Military College of Canada, Kingston, Ontario, Canada K7K 5L0

(Received February 24, 1995)

Abstract

A new approximation is proposed to the integral of the Boltzmann factor:

$$\int_{0}^{T} e^{-E/RT} dT$$

and is shown to be more accurate than the existing approximations over the entire range of values of E/RT, including low values.

Keywords: Boltzmann factor

Introduction

In the course of analyzing data collected from thermal analysis experiments, it often becomes necessary to evaluate the integral of the Boltzmann factor:

$$\Lambda(T) = \int_{0}^{T} e^{-E/RT} dT$$

As there is no exact closed-form solution to this integral, many approximations to it have been proposed over the years. Some of the more familiar ones are the following:

Frank–Kamenetskii [1]:
$$\Lambda(T) = \frac{RT^2}{E} e^{-E/RT}$$
 (1)

0368–4466/96/ \$ 5.00 © 1996 Akadémiai Kiadó, Budapest John Wiley & Sons, Limited Chichester

Coats and Redfern [2]:
$$\Lambda(T) = \frac{RT^2}{E} \left[1 - \frac{2RT}{E} \right] e^{-E/RT}$$
 (2)

Gorbachev[3]:
$$\Lambda(T) = \frac{T}{E/RT + 2} e^{-E/RT}$$
 (3)

In addition, asymptotic approximations to the integral are also available in the form of series. Based on the first three terms of the Schömilch series [4], Doyle [5] proposed an approximation that is identical to Eq. (3). Tables have also been published listing the values of the integral for different values of T and E/RT.

Discussion

In many instances such as, for example, combustion calculations where conservation equations have to be numerically integrated, it is convenient to have a closed-form expression for the approximation to the integral as in Eqs (1-3). Such an expression which is more accurate than the ones presently available, particularly at low values of E/RT often encountered in combustion phenomena, is derived below.

The approximation is written as:

$$\int_{0}^{T_{t}} e^{-E/RT} dT = \left[\frac{T}{E/RT + n} e^{-E/RT} \right]_{0}^{T_{t}}$$
(4)

where n, a function of E/RT_f , is a constant for given values of E and T_f . n is thus independent of T, but changes with T_f , the final temperature.

Differentiating Eq. (4) with respect to T and rearranging, we get:

$$e^{-E/RT} = \left[1 + \frac{2(E/Rt) - n(E/RT) + n - n^2}{(E/RT + n)^2}\right]e^{-E/RT}$$
(5)

We choose *n* such that Eq. (5) is satisfied at $T = T_f$ so that

$$n = \frac{1 - (E/RT_{\rm f}) + \sqrt{(E/RT_{\rm f})^2 + 6(E/RT_{\rm f}) + 1}}{2}$$
(6)

This ensures that the slopes of the function and the approximation match at $T=T_{\rm f}$.

The approximation to the Boltzmann factor therefore turns out as:

$$\Lambda(T) = \frac{2Te^{-E/RT}}{1 + (E/RT) + \{(E/RT)^2 + 6(E/RT) + 1\}^{1/2}}$$
(7)

E/RT	Numerical	Present	Frank-	Coats and	Gorbachev,
	quadrature	approximation	Kamenetskii	Redfern	Doyle
		Eq. (7)	Eq. (1)	Eq. (2)	Eq. (3)
1	4.037E-01	4.142E-01	1.000E+ 00	-1.000E+ 00	3.333E-01
2	2.773E-01	2.808E-01	5.000E-01	0.000E+ 00	2.500E-01
3	2.137E-01	2.153E-01	3.333E-01	1.111E-01	2.000E-01
4	1. 746E- 01	1.754E-01	2.500E-01	1.250E-01	1.667E-01
5	1.479E-01	1.483E-01	2.000E-01	1.200E-01	1.429E-01
6	1.284E-01	1.287E-01	1.667E-01	1.111E-01	1.250E-01
7	1.135E-01	1.137E-01	1.429E-01	1.020E-01	1.111E-01
8	1.01 8E- 01	1.019E-01	1.250E-01	9.375E-02	1.000E-01
9	9.224E-02	9.233E-02	1.111E-01	8.642E-02	9.091E-02
10	8.437E-02	8.443E-02	1.000E-01	8.000E-02	8.333E-02
11	7.774E-02	7.779E-02	9.091E-02	7.438E-02	7.692E-02
12	7.209E-02	7.212E02	8.333E02	6.944E-02	7.143E-02
13	6.720E-02	6.723E-02	7.692E-02	6.509E-02	6.667E-02
14	6.294E02	6.297E-02	7.143E02	6.1 22E- 02	6.250E-02
15	5.920E-02	5.921E-02	6.667E 02	5.778E-02	5.882E-02
16	5.587E-02	5.588E-02	6.250E 02	5.469E-02	5.556E-02
17	5.290E-02	5.291E-02	5.882E-02	5.190E-02	5.263E-02
18	5.023E-02	5.024E-02	5.556E-02	4.938E-02	5.000E-02
19	4.782E-02	4.783E-02	5.263E-02	4.709E-02	4.762E-02
20	4.563E-02	4.564E-02	5.000E-02	4.500E-02	4.545E-02

Table 1 Values of $\Lambda(T)/Te^{-E/RT}$

Table 1 compares the values of $\Lambda(T)/Te^{-E/RT}$ for various values of E/RT according to each of these approximations with that obtained by numerical quadrature [6]. The various approximations are also shown graphically in Fig. 1. The difference between the value obtained by quadrature and those of the approximations decreases as E/RT increases. However, it is seen that the present approximation, Eq. (7), is the most accurate over the entire range of values of E/RT and is indeed accurate enough for almost all cases.

References

- 1 D. A. Frank-Kamenetskii, Diffusion and Heat Exchange in Chemical Kinetics, Princeton University Press, 1955.
- 2 A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.
- 3 V. M. Gorbachev, J. Thermal Anal., 8 (1975) 349.
- 4 D. W. Van Kreveben, C. Van Heerden and F. J. Huntjens, Fuel, 30 (1952) 253.
- 5 C. D. Doyle, Nature, 207 (1965) 290.
- 6 IMSL Math/Library, Version 1.1, Sugar Land, Texas, 1989.